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Abstract

In this paper we consider the fundamental problem of how to design a flow path with minimum overall resistance

between one point (O) and many points situated equidistantly on a circle centered at O. The flow may proceed in either

direction, from the center to the perimeter, or from the perimeter to the center. This problem is an integral component

of the electronics cooling problem of how to bathe and cool with a single stream of coolant a disc-shaped area or

volume that generates heat at every point. The smallest length scale of the flow structure is fixed (d), and represents the

distance between two flow ports on the circular perimeter. The paper documents a large number of optimized dendritic

flow structures that occupy a disc-shaped area of radius R. The flow is laminar and fully developed in every tube. The

complexity of each structure is indicated by the number of ducts (n0) that reach the central point, the number of levels of

confluence or branching between the center and the perimeter, and the number of branches or tributaries (e.g., doubling

vs. tripling) at each level. The results show that as R=d increases and the overall size of the structure grows, the best

performance is provided by increasingly more complex structures. The transition from one level of complexity to the

next, higher one is abrupt. Generally, the use of fewer channels is better, e.g., using two branches at one point is better

than using three branches. As the best designs become more complex, the difference between optimized competitors

becomes small. These results emphasize the robustness of optimized tree-shaped networks for fluid flow.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Smaller scales demand greater complexity and optimi-

zation of construction

Thermal engineering is marching in step with other

fields toward phenomena and devices at smaller and

smaller scales. The engineering at microscales of only ten

years ago is being renewed by developments at consid-

erably smaller scales (meso, nano) in a revolution that is

sweeping all fields. The cooling of electronics, which

has inspired the fundamental problem proposed in this

paper, is an excellent example of how engineering

knowledge––mental and physical constructs––progresses

toward smaller scales to make things more useful, and to

pack finite-size spaces with more things that are useful.

In design, and in society in general, space is at a

premium. This is why the interest in performance at

smaller and smaller scales is natural, and will continue.

This focus, however, misses an equally critical part of

the picture. The devices engineered and touched by us––

the contrivances that enlarge the sphere and enhance

the capabilities of every human being––have scales that

are comparable with ours, or are even larger. Full-scale

devices are macroscopic. The miniaturization revolution

means not only that the smallest identifiable volume

element (the elemental system [1]) is becoming smaller,

but also that larger and larger numbers of such elements

must inhabit the macroscopic device that they serve.
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Each elemental volume ‘‘works’’ because it is ac-

cessed by electrical, heat and fluid currents. Each ele-

ment must be connected to the macroscopic currents

that flow into and out of the full-scale, macroscopic

system. This necessity endows the system with structure

(geometry, architecture, topology). The smaller the ele-

ments, and the larger their number, the greater the

complexity of the structure. In design, miniaturization

also means increasing complexity.

The driving force behind all these developments is the

need for ‘‘better’’ performance from our point of view, at

our scale, for our benefit. Needed are improvements in

the global performance of the macroscopic system.

Packing the system with smaller, more powerful and

more numerous elemental systems is a necessary first

step. The challenge is not only to find geometric ar-

rangements to connect the currents that must access the

elemental systems, but to optimize each connection such

that, ultimately, each design choice is reflected in an

increase in performance at the global level. To assemble

more and more elements into complex structures, and to

optimize (with global objective and space constraints)

each connection means to construct.

In sum, hand in hand with greater engineering

powers at smaller scales comes greater complexity and,

especially, greater challenges to optimize the complex

flow architecture––the internal connections––of the

macroscopic system. The flow architecture is the result

of the pursuit of global objective subject to global con-

straints. Numerous examples of optimized (i.e., de-

duced) flow structures from engineering and nature have

been brought together under the title of constructal

theory [1]. In this paper we propose the problem of de-

signing a new flow structure with minimal resistance in a

plane: the point–circle flow, or the flow connects the

center of a disc with the disc perimeter. The flow may

proceed from the center to the perimeter, or in the op-

posite direction.

We consider the point–circle flow construction at the

same fundamental level that other flow constructions

have been optimized in the past. For example, the struc-

ture with minimal resistance between two points is the

straight path with constant cross-section (round cross-

section for fluid flow in a duct). The optimized structure

for flow between one point and an area or volume (an

infinity of points) is shaped as a tree in which every

geometric detail is deducible from the minimization of

global resistance to flow.

Point–circle flows are already recognized as useful

designs for electronics cooling [2]. In this paper we

consider the optimization of the flow structure. We show

that the optimal point–circle flow pattern depends on

how small the elemental scale (d, Fig. 1) is relative to

the macroscopic scale represented by the circle radius

(R, Fig. 1). When d is comparable with R, the opti-

mal point–circle flow consists of radial ducts. When d

is much smaller than R, the optimal flow structure is

shaped as a tree that covers the disc. The complexity of

the tree increases in discrete steps as the elemental scale

becomes progressively smaller, or R becomes larger

(e.g., Fig. 9). In every case, that is for a given d=R ratio,

every geometric feature of the flow structure is derived

from the global maximization of flow performance,

subject to global flow constraints.

We mentioned the cooling of electronics as the en-

gineering field that served as inspiration for formulating

the point–circle problem. Several fundamental problems

of packing most cooling into fixed spaces [2–13] have

Nomenclature

a, b ratios, Eqs. (20) and (21)

A area (m2)

d smallest, fixed peripheral length scale (m)

D tube diameter (m)

f dimensionless flow resistance, Eqs. (10) and

(28)

g dimensionless function, Eq. (18)

L tube length (m)

_mm mass flow rate (kgm s�1)

n number of tubes

R disc radius (m)

V tube volume (m3)

x, y dimensions (m), Fig. 5

Greek symbols

a, b, c angles (rad), Figs. 2, 5–8, and 11–13

DP pressure drop (Nm�2)

m kinematic viscosity, (m2 s�1)

n ratio, x=y

Superscript

(̂ ) dimensionless notation, Eq. (26)

Subscripts

i rank of tube

min minimum

p tube touching the perimeter, Fig. 5

0 tube touching the center, Fig. 1

1, 2, . . . tubes positioned progressively closer to the

perimeter
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served to identify the main statements of the objectives

and constraints principle that generates optimal flow

geometry in constructal design [1]. For example, the

tree-shaped flows that have been optimized so far for the

purpose of cooling spaces with volumetric heat genera-

tion, are flows that fill rectangular areas and parallel-

epipedic volumes [1,14]. When the heat generating body

is a cylinder, or a disc with insulated faces, the rectan-

gular tree flows do not fit. The flow architectures for

fluid and heat must be designed with the disc-shaped

space as one of the global constraints.

One way to cool a disc-shaped domain that generates

heat uniformly per unit area is by providing it with a

stream of coolant that enters the disc through its center,

bathes the disc, and exits through ports located on the

disc perimeter. One part of the design problem is the

point–circle (or center–perimeter) flow path that offers

least resistance. This part is addressed in this paper.

2. Problem formulation

Consider the problem of designing dendritic paths of

least flow resistance (or minimum DP ) between the

center of a disc-shaped area of radius R and points on its

perimeter. The flow is between a point and a circle, and

vice versa. It is not between one point and another point.

The ducts are round tubes of several diameters (Di) and

lengths (Li; i ¼ 0, 1, . . .). The volume occupied by all the

tubes is fixed (this assumption is discussed more in

Section 9). The flow regime in each tube is laminar and

fully developed. We seek to optimize all the geometric

details of a structure shaped as a tree, or, better, as a

disc-shaped river basin or delta.

The flow rate _mm enters the flow structure through the

center of the disc, and flows almost radially through

tubes that become more numerous toward the rim of the

disc. Outlet ports are positioned equidistantly along the

rim. The flow may proceed in either direction, from

the center to the rim, or from the rim toward the cen-

ter. The main features of the structure are illustrated in

Fig. 1, where for simplicity we assume dichotomy:

pairing, or bifurcation at each node in the network. The

optimal number of branches at each node may not be

two: this is one of the questions to be considered in this

study (Section 8).

The simplest setting for studying this problem is

shown in Fig. 2. Several tubes (D0, L0) are positioned

radially and equidistantly around the center port. The

angle between two L0 tubes is a ¼ 2p=n0, where n0 is the
number of tubes (e.g., n0 ¼ 4 in Fig. 2). The flow rate

through one L0 tube is _mm0 ¼ _mm=n0. Pairing means that

there are n1 ¼ 2n0 peripheral tubes of size (D1, L1). The

flow rate through each peripheral tube is _mm1 ¼ _mm=n1.To
optimize the geometry of the flow structure means to

select the aspect ratios (L1=L0, D1=D0) and the tube

numbers such that the global resistance DP= _mm is mini-

mum. In Hagen–Poiseuille flow the resistance of tube

(Li, Di) is

DPi
_mmi

¼ 128m
p

Li

D4
i

ð1Þ

Beginning with Murray’s study of blood vessels [15],

many studies have shown that there is an optimal size

step (change in diameter) at each pairing node such that

the global flow resistance is minimized,

Diþ1

Di
¼ 2�1=3 ð2Þ

In this notation, as in Figs. 1 and 2, the index i counts

the tube sizes in the radial direction (i ¼ 0 are the tubes

that touch the center, and i ¼ p are the tubes that touch

the perimeter). The optimal aspect ratio (2) is very ro-

bust: it does not depend on the lengths and geometric

layout of the respective tubes [16]. We comment further

on Murray’s Eq. (2) in Section 9.

The newer aspect of the present problem is that the

area over which the tubes may be arranged is con-

strained. In the simpler case of T- and Y-shaped ar-

rangements of tubes, it was shown that the ratio of

successive tube lengths can also be optimized [16]. In the

present problem the Y-shaped construct of two L1 tubes

and one L0 tube occupies the fixed area of the circle

sector of angle a (Fig. 2, right). The pressure drop be-

tween the center and the ports on the rim is

Fig. 1. Dendritic pattern of tubes connecting the center and the

rim of a circular area.
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DP ¼ DP0 þ DP1 ¼ _mm0

128m
p

L0

D4
0

�
þ 1

2

L1

D4
1

�
ð3Þ

The volume occupied by the three tubes in the sector a is

Va ¼
p
4

D2
0L0

�
þ 2D2

1L1

�
ð4Þ

Using D1 ¼ 2�1=3D0, and eliminating D0 between Eqs.

(3) and (4) we arrive at

DP ¼ _mm0

8pm
V 2

a

L0

�
þ 21=3L1

�3 ð5Þ

So far we have made no assumptions regarding the

orientation of the L1 ducts for the purpose of minimiz-

ing DP . The geometry of the Y-shaped construct de-

pends on the radial position of the node (i.e., the length

L0), or the angle b. Both L0 and L1 vary with b, when R

is fixed:

L0 ¼ R cos
a
4

� �
� R

sinða=4Þ
tanb

ð6Þ

L1 ¼ R
sinða=4Þ
sinb

ð7Þ

To minimize the flow resistance (5) means to minimize

the expression (L0 þ 21=3L1) by varying b in accordance

with Eqs. (6) and (7). The minimum resistance occurs

when

b ¼ 0:654 rad ð37:47�Þ ð8Þ

It is remarkable that this angle does not depend on the

sector angle a. It does not depend on the aspect ratio of

the area that houses the construct. The minimized

pressure drop that corresponds to this angle is

DP ¼ _mm0

8pm
V 2

a

R3 cos
a
4

�
þ sin

a
4

21=3

sinb

�
� 1

tan b

��3
ð9Þ

The effect of the number of tubes becomes visible if we

use a ¼ 2p=n0, _mm0 ¼ _mm=n0 and Va ¼ V =n0, where V is the

total volume occupied by all the tubes. Eq. (9) becomes

DP ¼ _mm
8pm
V 2

R3f ðn0Þ ð10Þ

where

f ðn0Þ ¼ n0 cos
p
2n0

�
þ sin

p
2n0

21=3

sinb

�
� 1

tanb

��3
ð11Þ

The effect of n0 is such that the global resistance

increases as n0 increases: f ð2Þ ¼ 3:897, f ð3Þ ¼ 5:849,
f ð4Þ ¼ 7:213, f ð5Þ ¼ 8:381, f ð6Þ ¼ 9:471. The smallest

number of central tubes ðn0 ¼ 2Þ is not realistic because

its corresponding length (L0) is negative. The smallest

realistic number is n0 ¼ 3, for which the corresponding

lengths are L0 ¼ 0:214R and L1 ¼ 0:822R. These aspect

ratios and the optimal angle b are evident in the scale

drawing shown in Fig. 3.

3. Fewer channels are better

The conclusion that a small number (n0 ¼ 3) of

channels is the best way to connect the flow to one

central point is important. It is akin to the recent dem-

onstration that the best confluence (or branching) at a

node is represented by dichotomy (pairing, bifurcation)

[1]. Dichotomy is the well known geometric feature of all

natural dendritic flows. Likewise, the flow of a river

Fig. 2. Pattern with only one level of pairing or bifurcation, i.e., two tube sizes.
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delta starts with two or, maximum, three branches. The

flow of a river delta is biased (tilted) in one direction by

the slope of the terrain, unlike the pattern of Fig. 3.

Radially unbiased dendritic patterns have been simu-

lated by Chen [17], who injected water into a narrow

parallel-plates space occupied by glycerin.

The minimization of flow resistance in a plane calls

for simplicity in structure. The smallest number of

channels is the best, and that number decreases as more

constraints limit the freedom of the flow. In summary,

the smallest numbers are (Fig. 4):

3. when the point flow has access to all the directions

around that point (Fig. 4a)

2. when the point flow is biased in one direction by the

larger stream (Fig. 4b),

1. when the point flow has access to only one direction

(Fig. 4c); in this case, the resistance of the single and

straight channel is less than the resistance of two

channels in parallel, which have the same total vol-

ume.

The last two cases can be proven based on simple

analysis. Further proof is provided by the numerical

solutions presented in Section 8. As an extension of Fig.

4, we can expect that in a three-dimensional structure

the best (smallest) number for channels out of (or into) a

single point is 4, and that the best number of branches

(or tributaries) for a stream is 3.

4. More complex radial dendrites

The imposed, global length scales of the flow pattern

are not only the total extent (R, Fig. 1) but also the

smallest distance between the points (ports) serviced by

the flow structure (d, Fig. 1). The fixed smallest length

scale is a characteristic of all dendritic flows, engineered

or natural [1]. Diffusion governs the flow beyond the

densest points, that is, at length scales smaller than d. In

Fig. 4. The best (smallest) number of channels to or from one point in a plane.

Fig. 3. The minimum-resistance flow structure when there is

only one level of pairing or bifurcation.

W. Wechsatol et al. / International Journal of Heat and Mass Transfer 45 (2002) 4911–4924 4915



this way, the flow of Fig. 1 connects the central point to

the entire rim area of length 2pR and thickness d. In an

engineered structure such as the supply of water or other

goods from one central point, the rim represents the

circle of consumers, where the territory represented by

one consumer is of order d2.

When d is smaller than but comparable with R, the

best structure has only one level of pairing or branching

(3 inner nodes), as in Fig. 3. When d is even larger, say

between R and 2R, nodes are not even necessary: the

best way is to connect the central point to three equally

spaced points around it. The angle between two adjacent

ducts would be 120�.
Much more challenging is the case of a territory so

large that the diffusion scale d is much smaller than R.

This case is essential because all natural flows grow

in size, if space is available: consequently, most radial

dendrites are characterized by R � d, where d is fixed,

and R increases in time. In such cases the number (p) of

levels of pairing or bifurcation is not fixed. This number

is an additional degree of freedom that can be selected

such that the overall flow resistance is minimum. We can

expect the optimal number of pairings to increase as R

increases.

5. Pairings near the periphery

On the right side of Fig. 2 we saw that the area ele-

ment that houses one Y-shaped construct (pairing, bi-

furcation) is a circular segment, i.e., a curvilinear

triangle. When the pairing number is greater than one,

the Y-shaped constructs that do not touch the center

(source, sink) are housed by curvilinear rectangles.

When R is considerably larger than d, the curvilinear

rectangles that are located closer to the rim look pro-

gressively more like true rectangles.

This trend is illustrated in Fig. 5. We focus on one

area element near the periphery, and assume that it is a

rectangle. We seek the optimal architecture (aspect ra-

tios) such that the flow resistance of the element is

minimum, when the elemental area and tube volume are

fixed. In other words, we pass the design of the rectan-

gular system through the optimization steps outlined in

Section 2 for one of the central sectors.

The size of the element (A ¼ xy) is fixed. We know

that A is of order d2, but we do not know the best shape

of A, i.e., the aspect ratio

n ¼ x
y

ð12Þ

The second degree of freedom of the rectangular struc-

ture is the relative position of the internal node. This

variable is represented by the angle b.
The third degree of freedom is the tube diameters

ratio Dp=Dp�1. According to Eq. (2), the optimal value is

2�1=3, regardless of the tube lengths (Lp, Lp�1) and their

relative positions. The minimized flow resistance of the

rectangular construct is obtained through a change in

notation in Eqs. (4) and (5),

DPp ¼ _mmp�1

8pm
V 2
p

Lp�1

�
þ 21=3Lp

�3 ð13Þ

Vp ¼
p
4

D2
p�1Lp�1

�
þ 2D2

pLp

�
ð14Þ

The pressure drop DPp is measured between node (p � 1)

and the periphery (p þ 1), i.e., DPp is centered on node p.

In this formulation Vp and _mmp�1 are the total tube volume

and the total flow rate through node p. The tube lengths

can be expressed in terms of the degrees of freedom (n,
b) and constraints (A, Vp)

Lp ¼
y

4 sinb
ð15Þ

Lp�1 ¼
y
2

� �2

"
þ x
�

� y=4
tan b

�2
#1=2

ð16Þ

Fig. 5. Rectangular element near the rim of the dendritic pattern, when R � d.
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where x ¼ ðnAÞ1=2 and y ¼ ðA=nÞ1=2. Eq. (13) becomes

DPp ¼ _mmp
8pm
V 2
p

A3=2g3 ð17Þ

where

gðn; bÞ ¼ 1

4n

"
þ n1=2

�
� 1

4n1=2 tanb

�2
#1=2

þ 21=3

4n1=2 sin b

ð18Þ

The function g can be minimized with respect to both n
and b:

gmin ¼ 1:324 at n ¼ 0:7656; b ¼ 0:927 rad ð53:1�Þ
ð19Þ

In summary, the optimal Dp=Dp�1, ratio and the n
and b values reported above represent the optimized

architecture of the peripheral area element highlighted in

Fig. 5. This design is valid when the element is ap-

proximately rectangular. The n and b values can be used

to calculate other geometric ratios of the element, for

example, the distances between successive pairings,

xp
xp�1

¼ a ¼ 0:325 ð20Þ

and the successive tube lengths,

Lp

Lp�1

¼ b ¼ 0:409 ð21Þ

All the elemental scales are proportional to the ele-

mental spacing d, for example

xp
d
¼ 0:375;

Lp

d
¼ 0:625 ð22Þ

If, as we proceed from the periphery toward the

center, we approximate all the area constructs as rect-

angles, the distance from the periphery to the center is

R ¼
Xp

i¼0

xi ¼
xpð1� apþ1Þ
ð1� aÞap ð23Þ

Eq. (23) dictates the approximate number of pairing

levels (p) when the elemental scale (d, or xp) and the

global scale (R) of the structure are known.

The overall flow resistance encountered by the stream

( _mm0) between the periphery and the center of the disk is

obtained by summing (p þ 1) pressure drops of the type

shown in Eq. (1),

DP ¼
Xp

i¼0

DPi

¼ _mm0

128m
p

Lp

D4
p

2�4=3b
� �p 1� 21=3b

� �pþ1

1� 21=3b
ð24Þ

The total volume of all the tubes in the structure is

V ¼
Xp

i¼0

2i
p
4
D2

i Li ¼
p
4
D2

pLp
1� 21=3b

� �pþ1

2�2=3bð Þp 1� 21=3bð Þ ð25Þ

The elemental tube diameter (Dp) is assumed fixed, along

with the other dimensions of the peripheral element. In

this case Eq. (25) establishes a one-to-one relationship

between V and p.

6. Two or more levels of branching

Eqs. (20) and (21) show that when there are many

levels of branching or confluence (Fig. 5), the optimized

area elements become smaller in sizeable steps as we

approach the periphery. This trend contradicts the

message of Fig. 3, which shows that when there is only

one branching level the peripheral length scale (L1) is

greater than the central scale (L0). To decide which trend

is correct when the number of branching levels is mod-

erately greater than 1, we performed the analysis of

Section 2 for structures with two levels of branching, or

pairing.

Fig. 6 shows the resulting optimized structure when,

as in Fig. 3, the central region has only three ducts

(n0 ¼ 3). This optimized geometry is represented by the

lengths and angles reported in the top line (n0 ¼ 3) of

Table 1. Note that all the lengths have been non-

dimensionalized by using R as reference,

bLLi; x̂xi
� �

¼ Li; xið Þ=R ð26Þ

Fig. 6. The optimized flow structure with two levels of pairing

and n0 ¼ 3.
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The f value is the minimum of the function

f ¼ n0 bLL0

�
þ 21=3bLL1 þ 22=3bLL2

�3

ð27Þ

which is proportional to the overall flow resistance,

DP ¼ 8pm _mm
R3

V 2
f ð28Þ

The flow rate _mm is the total flow rate, and _mm0 ¼ _mm=n0 is

the flow rate through a single L0 tube.

The structure of Fig. 6 begins to bridge the gap be-

tween Fig. 3 and the optimization rules of Eqs. (20) and

(21). Note that in Fig. 6 the central duct (L0) is sensibly

shorter than the next, post-bifurcation duct (L1). This is

in qualitative agreement with the features of Fig. 3. The

next two ducts show that L1 > L2. This is the feature

anticipated in Eq. (21). It does represent a shift from

increasing lengths (L1=L0 > 1, as in Fig. 3) to decreasing

lengths (Lp=Lp�1 < 1, as in Eq. (21)).

Table 1 shows the geometric features of optimized

structures with two levels of pairing, when the number

of central tubes (n0) increases above 3. The pressure

drop factor f increases monotonically with n0, and in-

dicates that the simplest structure (n0 ¼ 3) offers the

smallest global resistance to flow. The table also shows

that the proportionalities anticipated in Eqs. (20) and

(21) are approached closely as n0 increases. For example,

when n0 ¼ 16, the ratios between the peripheral lengths

are x2=x1 ¼ 0:365 and L2=L1 ¼ 0:431, which come close

to Eqs. (20) and (21), respectively.

We took this optimization work to the next level of

complexity, which is the structure with three levels of

pairing. Fig. 7 is a scale drawing of the n0 ¼ 3 case, the

dimensions of which are listed in the top line of Table 2.

For a given n0, the structure is characterized by four

tube lengths (L0, L1, L2, L3) and three angles (b, c, /).

The pressure drop factor f is defined as in Eq. (28), and

is given by

f ¼ n0 bLL0

�
þ 21=3bLL1 þ 22=3bLL2 þ 2bLL3

�3

ð29Þ

The table shows that f increases monotonically with n0,

and that the lowest resistance occurs when n0 ¼ 3.

The optimized ratios of lengths near the periphery,

Eqs. (20) and (21), are approached by the results

of Table 2 as n0 increases. For example, when n0 ¼ 3

the ratios are L3=L2 ¼ 0:526 and x3=x2 ¼ 0:477. When

n0 ¼ 8, the corresponding ratios have the values 0.465

Fig. 7. The optimized flow structure with three levels of pairing

and n0 ¼ 3.

Table 1

The optimized geometric features of flow structures with two levels of pairing (e.g., n0 ¼ 3 in Fig. 6)

n0 b c bLL0
bLL1

bLL2 x̂x1 x̂x2 f

deg rad deg rad

3 38.85 0.6783 36.77 0.6420 0.157 0.509 0.432 0.482 0.361 9.82

4 38.64 0.6747 39.78 0.6946 0.337 0.464 0.305 0.420 0.243 11.10

5 38.31 0.6689 41.65 0.7272 0.458 0.408 0.235 0.359 0.183 12.16

6 38.08 0.6648 42.96 0.7501 0.543 0.358 0.192 0.312 0.145 13.16

7 37.93 0.6623 43.95 0.7674 0.607 0.318 0.161 0.273 0.120 14.13

8 37.83 0.6605 44.73 0.7810 0.655 0.286 0.139 0.243 0.102 15.10

9 37.75 0.6591 45.34 0.7917 0.693 0.258 0.123 0.218 0.089 16.07

10 37.70 0.6583 45.85 0.8006 0.724 0.236 0.109 0.198 0.078 17.03

11 37.66 0.6576 46.28 0.8081 0.749 0.217 0.099 0.181 0.070 18.00

12 37.63 0.6570 46.63 0.8142 0.770 0.200 0.090 0.167 0.063 18.98

13 37.61 0.6567 46.94 0.8196 0.788 0.186 0.083 0.154 0.058 19.95

14 37.59 0.6563 47.21 0.8243 0.803 0.174 0.076 0.144 0.053 20.93

15 37.57 0.6557 47.44 0.8283 0.816 0.163 0.071 0.134 0.050 21.91

16 37.56 0.6555 47.65 0.8316 0.828 0.153 0.066 0.126 0.046 22.88
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and 0.399, which are closer to the values anticipated in

the limit of nearly rectangular peripheral area elements

(Fig. 5 and Eqs. (20) and (21)).

It can be verified that the agreement improves when

the structure has four levels of pairing. Fig. 8 shows the

optimized structure for n0 ¼ 3, and Table 3 reports all

the geometric features for n0 ¼ 3; . . . ; 8. The angles b, c,
/ and h are defined on Fig. 8.

In summary, the analytical optimization developed

based on Fig. 5 is supported by case-by-case optimized

structures with two, three and four levels of pairing

(Tables 1–3). The analytical results of Section 5 are more

accurate (i.e., more appropriate) for more complex

structures, i.e., structures with more central tubes and

more levels of pairing.

7. When branching is beneficial

All the tree-shaped flows developed so far represent

design–optimal geometric form with purpose. Every

dendrite took shape on our piece of paper because we

sought the minimization of the resistance to fluid flow

between one central point and many points on a circle

circumscribed to the center. We developed several clas-

ses of optimized dendritic patterns: trees with one level

of pairings (Fig. 3), two levels (Fig. 6), three levels (Fig.

7), and four levels (Fig. 8). Which dendritic pattern is

better?

The answer depends on what is fixed. We continue to

rely on the view that the smallest length scale of the flow

pattern––the elemental scale––is known and fixed [1]. In

Section 5 this length scale was the distance (d) between

two adjacent points on the circle. Let us also assume that

the radius of the circle (R) is fixed. This means that the

number of points on the circle (N) is fixed. It is also

reasonable to assume that the total volume of the tubes

installed on the R-fixed disc is also a constant.

Fig. 8. The optimized flow structure with four levels of pairing

and n0 ¼ 3.

Table 3

The optimized geometric features of flow structures with four levels of pairing (e.g., n0 ¼ 3 in Fig. 8)

n0 b c / h bLL0
bLL1

bLL2
bLL3

bLL4 x̂x1 x̂x2 x̂x3 x̂x4 f

3 37.5 38.1 43.1 49.8 0.109 0.420 0.337 0.180 0.086 0.402 0.292 0.139 0.058 16.04

4 37.5 39.9 45.9 52.7 0.275 0.407 0.263 0.131 0.062 0.372 0.219 0.096 0.038 17.10

5 37.5 41.6 48 54.9 0.400 0.371 0.212 0.103 0.048 0.330 0.170 0.072 0.028 17.92

6 37.5 42.8 49.6 56.5 0.493 0.333 0.177 0.084 0.039 0.291 0.138 0.057 0.021 18.67

7 37.5 43.8 50.9 57.7 0.562 0.300 0.151 0.071 0.033 0.259 0.115 0.046 0.018 19.44

8 37.5 44.6 51.9 58.7 0.615 0.271 0.132 0.061 0.029 0.232 0.099 0.039 0.015 20.23

Table 2

The optimized geometric features of flow structures with three levels of pairing (e.g., n0 ¼ 3 in Fig. 7)

n0 b c / bLL0
bLL1

bLL2
bLL3 x̂x1 x̂x2 x̂x3 f

deg rad deg rad deg rad

3 40.6 0.709 36.79 0.642 42.39 0.740 0.153 0.416 0.368 0.194 0.388 0.311 0.148 13.44

4 39.19 0.684 39.53 0.690 45.61 0.796 0.308 0.410 0.276 0.137 0.370 0.223 0.099 14.54

5 38.5 0.672 41.4 0.723 47.9 0.836 0.425 0.375 0.219 0.106 0.330 0.172 0.073 15.44

6 38.2 0.667 42.8 0.747 49.6 0.866 0.512 0.337 0.181 0.086 0.292 0.138 0.058 16.31

7 38 0.663 43.8 0.765 50.9 0.889 0.578 0.303 0.154 0.072 0.260 0.116 0.046 17.17

8 37.9 0.662 44.6 0.779 51.9 0.906 0.629 0.274 0.134 0.062 0.232 0.099 0.040 18.04
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Under these circumstances, formulas such as Eq. (28)

show that the global flow resistance of the tree construct

(DP= _mm) varies proportionally with f, while the other

factors are constant. The flow pattern with less global

resistance is the one with the lower f value. This is why

we took special care in calculating the f values reported

in Tables 1–3. These values are plotted in Fig. 9, where

we have used continuous curves for each class (number

of levels of pairing) even though N is an integer. The

leftmost curve corresponds to purely radial flow (no

pairings): one can show that this curve is represented by

the line f ¼ N . Each of the subsequent f ðNÞ curves is

almost a straight line when plotted on a graph with

linear scales in f and N.

The smallest f corresponds to N ¼ 1, or a single ra-

dial tube between the center and a point on the circle.

The next highest f belongs to N ¼ 2. These banal cases

fall outside the class of flows that form the subject of this

paper (point–circle flows). They are point-point flows,

and are certainly not relevant to the cooling of a disc-

shaped body that generates heat.

Fig. 9 is instructive for additional reasons.We read this

figure vertically, at N ¼ constant. One conclusion is that

pairing, or branching is a useful feature ifN is sufficiently

large (greater than 6). The larger the N value, the more

likely the need to design more levels of pairings into the

flow structure. If the number of points on the rim of the

structure (N) increases, then the flow structure with min-

imal flow resistance becomes more complex. Complexity

increases becauseN increases, and because the number of

pairing levels increases. Complexity is the mechanism by

which the dendritic flow assures its minimal resistance

status. Optimized complexity is the design principle.

If we think of fixed rims (R) with more and more

points (N), then the search for minimal flow resistance

between the rim and the center requires discrete changes

in the structure that covers the disc. To start with, N has

to be large enough for an optimized structure with one

or more pairings to exist. These starting N values (6, 12,

24, . . .) are indicated with circles in Fig. 9. As the

structures become more complex, these circles describe a

nearly smooth curve in the semilogarithmic plot of Fig.

9. When there are three or more levels of pairing, the

circles indicate the transition from one type of struc-

ture to the next type with one more level of branching.

This transition, or competition between competing flow

structures, is analogous to the transition and flow pat-

tern selection in B�eenard convection. In the vicinity of

each circle in Fig. 9, the designer can choose between

two structures, as both have nearly the same resistance.

These choices are illustrated in Fig. 10, which shows the

two dentritic structures that compete in the vicinity of

points 3 and 4 of Fig. 9.

The transition from structures with one pairing to

structures with two levels of pairing does not occur at

the smallest N where two levels of pairing exist. Note

that the curves labeled (1) and (2) in Fig. 9 intersect

where N is larger than 12, namely at N ¼ 13:75. This
means that the choice is between two designs with

N ¼ 16: the design with one level of pairing and n0 ¼ 8,

and the design with two levels of pairing and n0 ¼ 4. The

latter is slightly better. Note also that curve (1) is the

same as Eq. (11), in which n0 ¼ N=2. There is also an

intersection between curves (2) and (3), which occurs at

N ¼ 27:52. The choice between structures with two,

three and four levels of pairing is illustrated in Fig. 10.

Fig. 9. The effect of the number of levels of pairing on the global flow resistance (f) when the number of points on the circle (N) is fixed,

and the radius (R) and the total tube volume (V) are fixed.
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8. Three branches instead of two

An increasingly large number of points (N) on the

circular perimeter (R) can be supplied with fluid at the

same rate by increasing the number of pairing levels

(Figs. 9 and 10), or by increasing the number of bran-

ches at each branching level. We investigated this second

alternative by optimizing flow structures with three

branches instead of two.

Fig. 11 is a scale drawing of the optimized flow ar-

chitecture where there are three central tubes (n0 ¼ 3),

one branching level, and three branches on every central

tube. The number of points on the rim (N ¼ 9) are po-

sitioned equidistantly. The total volume of all the tubes

is fixed. The structure has three degrees of freedom when

the disc size (R) is fixed, namely, the angle b and the tube

diameter ratios D1=D0 and D10=D0. The flow-resistance

minimization procedure is the same as in the preceding

sections, and is not described here. Noteworthy is that

the two outer branches (L10 , D10 ) are longer than the

inner branch (L1, D1). The optimized structure is char-

acterized completely by

L0=R ¼ 0:360; L1=R ¼ 0:640; L10=R ¼ 0:760;

b ¼ 57:7�; D1=D0 ¼ 0:68; D10=D0 ¼ 0:71 ð30Þ

The minimized overall flow resistance is f ¼ 8:24,
where f has the same meaning as in Eq. (28). Note that

this point (f ¼ 8:24, N ¼ 9) falls above the ‘‘one pair-

ing’’ curve plotted in Fig. 9. There is no point at N ¼ 9

on that curve; the closest points are N ¼ 8 (n0 ¼ 4) and

N ¼ 10 (n0 ¼ 5). Even so, the f value of the N ¼ 9

structure of Fig. 11 suggests that structures with three

branches are only marginally inferior to structures with

two branches.

We took a closer look at this suggestion by opti-

mizing two structure types that have exactly the same

number of ports on the rim, N ¼ 12. Both have only one

level of branching. The optimized structure reported in

Fig. 12 has two branches on every central tube (n0 ¼ 6),

Fig. 10. The transition from one tree structure to one with one more level of pairing, as the flow resistance (f) is minimized while N

increases.
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and the global flow resistance f ¼ 9:471. The competing

flow structure shown in Fig. 13 has three branches on

every central tube (n0 ¼ 4), and the resistance f ¼ 9:602.
In conclusion, in this particular case the use of three

branches instead of two leads to a 1.4% increase in the

overall flow resistance. Pairing is better than tripling.

The more practical conclusion is that two optimized

structures that are visually different (Figs. 12 and 13)

perform at nearly the same level.

9. Concluding remarks

The use of three branches instead of two can be ad-

vantageous when the R and d constraints are such that

the number of peripheral parts (N) cannot be ac-

commodated by a pairing sequence, regardless of the

number of pairing levels. To illustrate this design op-

portunity, consider a flow structure that must have

N ¼ 36 ports on the perimeter. According to the results

shown in Fig. 9, two flow structures generated by the

pairing rule are possible:

one pairing level ðn0 ¼ 18Þ f ¼ 21:62

two pairing levels ðn0 ¼ 9Þ f ¼ 16:07
ð31Þ

If, on the other hand, we use three branches at each

level of complexity increase, and if we optimize every

geometric detail as in all the designs exhibited until now,

we find that there are flow structures that can be gen-

erated based on the tripling rule:

one tripling level ðn0 ¼ 12Þ f ¼ 17:58

two tripling levels ðn0 ¼ 4Þ f ¼ 15:56
ð32Þ

Results (31) and (32) show that the designs with three

branches perform better; specifically, the overall flow

resistance of the structure with two tripling levels

Fig. 13. The optimized flow structure with one level of

branching and three branches on every central tube (n0 ¼ 4,

N ¼ 12).

Fig. 11. The optimized flow structure with one level of

branching, and three branches on every central tube (n0 ¼ 3,

N ¼ 9).

Fig. 12. The optimized flow structure with one level of

branching and two branches on every central tube (n0 ¼ 6,

N ¼ 12).
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(f ¼ 15:56) is 3.2% smaller than the flow resistance of

the structure with two pairing levels (f ¼ 16:07). This
conclusion strengthens what we wrote in the preceding

paragraph. Note that the curve for three pairings and

N ¼ 36 in Fig. 9 suggests a value (f ¼ 14:99) that is even
lower than the f value achieved with two tripling levels.

The catch is that a structure with N ¼ 36 and three

pairing levels would require the use of a number of

central channels that is not an integer (n0 ¼ 4:5). In

conclusion, as more and more complex structures com-

pete on the minimum-resistance envelope of all the

possible designs, some flow structures with three bran-

ches are the best when structures with two branches are

not possible. On the envelope, competing designs per-

form similarly even though they appear to be different

(e.g., doubling vs. tripling). We see once again that op-

timized tree-shaped flows are robust.

The work that we reported was based on several

simplifying assumptions, which had the merit of sim-

plifying the design without hurting the fundamental

character of the questions that we pursued. For exam-

ple, we assumed that each duct is round and the flow

regime is laminar and fully developed. We also neglected

pressure-drop losses due to entrance effects at points of

confluence and bifurcation. Future treatments of this

fundamental problem may consider the effect of variable

cross-sectional areas of ducts, and the effect of periodi-

cally fully developed flow and heat transfer.

The results––the optimized tree-shaped flow struc-

tures––are valid for other duct cross-sections with fully

developed laminar flow. In such cases, the pressure drops

are described by proportionalities of the same type as in

Eq. (1), with the appropriate hydraulic diameter in place

of Di. In other words, the optimized diameter ratios that

we reported in this paper are also valid for the ratios

between successive hydraulic diameters, provided that

the cross-sectional shape is preserved.

Trends such as the recommended transitions to better

and more complex flow structures (Figs. 9 and 10), and

the robustness of the optimized complex structures can

be expected in further extensions of this work. For ex-

ample, in an earlier study we found that if the laminar

flow assumption is replaced by the assumption of fully

developed turbulent duct flow, the same optimization

opportunities exist (e.g., ratios of diameters, lengths,

optimal layouts in space) even though the actual nu-

merical values (e.g., aspect ratios) may not be the same

as in laminar flow [16]. This is why we submit this op-

timization of the point–circle flow structure as a fun-

damental first step. The same method can be used in

conjunction with more realistic models, and the gener-

ation of optimized geometry should follow the steps that

we outlined.

We use this opportunity to draw attention to an

important observation regarding the minimization of

pumping power subject to flow volume constraint.

Murray’s optimized diameter ratio (2) came originally

[18] from the minimization of an objective function that

had two terms: (i) the fluid pumping power, and (ii) the

‘‘cost’’ of the blood volume, which was proportional to

the volume of all the flow tubes. For example, in the case

of a single tube with diameter D and fully developed

laminar flow, term (i) is proportional to D�4, and term

(ii) is proportional to D2. Both terms vary as D varies,

and from the minimization of the linear combination of

(i) and (ii) resulted the optimal D for the tube, or the

optimal ratio of tube diameters for bifurcated tubes. The

observation is that this optimization procedure is equiv-

alent to minimizing (i) alone, but under the assumption

that (ii) is constrained, cf. the method of Lagrange

multipliers. This is why in contemporary studies of

complex flow networks the optimization is based rou-

tinely on (i) as objective function, and (ii) as constraint.

How realistic is (ii) as a constraint? In physiology,

this constraint is very important because mass (space,

weight) comes at a premium. Every unit mass on the

animal requires a proportional cost in spent exergy

(food intake, motive power). For example, this propor-

tionality is very clear in the case of animal flight [1, p.

239]. In the cooling of electronics, the invocation of (ii)

is justified on the same basis: the maximization of the

use of space is the objective. In other words, space that is

allocated in an existing design to cooling ducts could

have been used better, for example, for the packing

(compacting) of additional electronics. The mechanism

that generates future designs is the constructal princi-

ple: the maximization of global performance in a con-

strained but morphing flow structure, in a process where

the visible result is geometric form (e.g., flow architec-

ture).
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